The organization of the keratin I and II gene clusters in placental mammals and marsupials show a striking similarity.
نویسندگان
چکیده
The genomic database for a marsupial, the opossum Monodelphis domestica, is highly advanced. This allowed a complete analysis of the keratin I and keratin II gene cluster with some 30 genes in each cluster as well as a comparison with the human keratin clusters. Human and marsupial keratin gene clusters have an astonishingly similar organization. As placental mammals and marsupials are sister groups a corresponding organization is also expected for the archetype mammal. Since hair is a mammalian acquisition the following features of the cluster refer to its origin. In both clusters hair keratin genes arose at an interior position. While we do not know from which epithelial keratin genes the first hair keratins type-I and -II genes evolved, subsequent gene duplications gave rise to a subdomain of the clusters with many neighboring hair keratin genes. A second subdomain accounts in both clusters for 4 neighboring genes encoding the keratins of the inner root sheath (irs) keratins. Finally the hair keratin gene subdomain in the type-I gene cluster is interrupted after the second gene by a region encoding numerous genes for the high/ultrahigh sulfur hair keratin-associated proteins (KAPs). We also propose a tentative synteny relation of opossum and human genes based on maximal sequence conservation of the encoded keratins. The keratin gene clusters of the opossum seem to lack pseudogenes and display a slightly increased number of genes. Opossum keratin genes are usually longer than their human counterparts and also show longer intergenic distances.
منابع مشابه
Terrestrial vertebrates have two keratin gene clusters; striking differences in teleost fish.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are fou...
متن کاملO-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals
Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...
متن کاملOrigins and divergence times of mammalian class II MHC gene clusters.
The class I and II major histocompatibility complex (MHC) genes are apparently subject to evolution by a birth-and-death process. The rate of gene turnover is much slower in the latter genes than in the former. In placental mammals, the class II region can be subdivided into different orthologous subregions or gene clusters (DR, DQ, DO, and DN), but the origins and evolutionary relationships of...
متن کاملPhylogeny, Diet, and Cranial Integration in Australodelphian Marsupials
Studies of morphological integration provide valuable information on the correlated evolution of traits and its relationship to long-term patterns of morphological evolution. Thus far, studies of morphological integration in mammals have focused on placentals and have demonstrated that similarity in integration is broadly correlated with phylogenetic distance and dietary similarity. Detailed st...
متن کاملGiant Panda Genomic Data Provide Insight into the Birth-and-Death Process of Mammalian Major Histocompatibility Complex Class II Genes
To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of cell biology
دوره 85 2 شماره
صفحات -
تاریخ انتشار 2006